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~E~ER~LI~~ DYNAMIC PR~BL~ OF THE~~E~STICITY FOR A 
HALF-SPACE HEATED BY LASER R~IATION* 

M.S. BOIKO 

A generalized dynamic problem of thermoelasticity is solved for a half- 
space heated by laser radiation. Expressions for the displacements in 
the Rayleigh wave are obtained. The asymptotic form of the solution at 
a point at infinity is studied. It is shown that the magnitude of the 
displacements at the wave fronts depends essentially onthe value of the 
rate of propagation of heat. 

1. Formulation of the problem. Let a beam of radiant energy fall, at the instant 
r==0, on acircular region of a plane boundary of an elastic half-space. The position of 
every point of it is determined by the coordinates p.z.8, of a cylindrical coordinate system. 
The radiation intensity volume density of the beam is 

(H (4 is Heaviside's function). We require to find the elastic stresses and displacements 
in the half-space when the radiant energy 1s absorbed. The variationinthe temperature field 
caused by the deformation is ignorded. 

The solution of this prcblez can be reduced to solving the following set of Eqs. il/: 

Here Cb. Y axe the displacement potentials, t: is temperature, Cl. Co are the velocities 

of the longitudinal and transverse wave, 1, is the thermal flux relaxation time, a is the 
thermal conductivity, i.. ;i are the Lam> coefficients, a! is the coefficient of thermal 

expansion, and 1 is the Laplace operator. 
The solutions of the system must satisfy the following boundary and initial conditions: 

azz =op* - -0, -Q.$, tt&, (1.3) 

~=Y'~~-z__--d" dy -0 -dT_-?&-~~-. Cl.41 

t”ij is the thermoelastic stress tensor, n is the absorption capacity and h, is the 

thermal conductivity. 

2. Construction of the solution. we shall construct the solution of the problem 
using the contour-integral method /2/. Let us write the solution sought in the form of the 
Fourier-Bessel transform 



~=~.~,(k,z)kJ,(kp)dk, ‘F=~&(k,z)kJ~(b)dk. 

i i 

t=~.~:(k,z)kJo(kp)dk, 

0-k 

Aj(k,Z)=& \ Aj(ptk,Z)ep’dp, 
I 

,=e.,.2 

o-i= 

(2.1) 

The unknown functions Aj are found by substituting relations (2.1) into (1.2)-(1.4) and 

solving the resulting ordinary differential equations in the Same manner as in /2/. Let us 
write thefinalexpressions for Aj 

A0 = Tie-@ j Ttedz, A, = T8e-Rz, A2 = + Cd = (2.2) 

Tl=+ [(k? + fl# -4li*&d]. Tz=-& ql(p)J, (kR,) 

T3 = + (kz - pS2) (& - d) k. T,, = 4!i*p,p, - (X2 - p2')? 

co+. al=+l. P,'=k?--. [=I.": 
9 1 

d&?,.‘-++$ 

‘I1 (P) = ~” i ~,p 
_q-$ 

tc9 is the rate of heat propagation). The branches of the radicals in (2.2) are fixed by 
the condition that arg p1 = arg ,t& = alcd = 0 when p > 0. 

We write the expressions for the components of elastic displacements in the form 

(2.3) 

u&-\( \I [kT,&-- 
i o-?z 

TI@,r-Lz - dT,c-‘:I er’: dp;, kJ, (k&) Jo (k!t) d?i 

Analysing expressions (2.2) we find that ci, (~>.k.:) are analytic functions of the complex 
variable p in the region (G: Rep > --nuol-') when CR > Cl 1 and in the region (G: Rep > 0) when 
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rq \< Cl. Analytic 
with branch points 

continuation Aj (~j. k? z) to the left half-plane is a multivalued function 

and simple poles 

pj,6 = =ikc,:. p: = -a0 al. plo = 0 

We shall consider, on the upper sheet of the multisheeted Riemann surface the branch of 
the multivalued function dj (p.k.i) which represents the analytic continuation of this function, 
first defined in the region G Every sheet of the Riemannian surface represents a plane p 
with cuts carried out as shown in Fig.:. 

Following /3,/, we shali rePresent tie whole field of displacements in the form 

1. = I‘, - L'E - I-, 

where U0 describes the static part of the problem and is determined by the contribution of 
the pole p10 = 0, GR describes the Rayleigh wave and is determined by the contribution of the 
poles ph6 = kikch, representing the solution of the equation Ta = 0, U, describes the volume 
waves and is obtained by integrating along the contour k shown in Fig.1. We eliminate L', 
from further consideration, since we concern ourselves here only with the dynamic part of the 
problem. 

3. Determination of the displacement field in the Rayleigh wave. If the 
deformation of the initial contour of integration into the contour h is accompanied by 
intersection of the poles P$,+. 
wave must be taken into account. 

then the contribution of these poles determining the Rayleigh 
Determining the residues at these poles we obtain 
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Let us consider a special case of a point source 
obtained from (3.1) by the following passage to the 

IWP limit: 

i lim LTOs = Vi,, lim G',*= LI;a 
R.-O R.-O 

where we have (W is the power of the optical radiation 
pa F, source) 

limbR,=b,=~ 
%-I 9 

Since it is not possible to derive an expression 
for the displacement components in closed form, we shal 
attempt to obtain the approximate expressions for CPr" 
and I-‘;xc. Let us consider the integral 

Lemma. Let 

f(liEc"(lO;~l); Rei.,>O, Y>-2 

T‘nen the following asymptotic expansion, as Ii., I-.+ X, holds: 

(3.21 

(3.3) 

(F (Q, b, c, z) is the hypergeometric functic;. ar.8 I- (1) is the gamma function!. 

Proof. We take t= I, such that 1,, < 1. Then 

1 [ f~-i*e-‘tf], (;,,I , & ; :i / 1’ ‘le.’ t / b,i <f f”-‘e‘Re (i.zt! dr = F, (j.J 

When Rei., > Cl ( the last rntegral has the following; estimate by virtue of Lemma 1.1 of 
id/: 

f, (i.,, < c exp JRe j/&tj 

Let us consider the ir,cegral 

Let us write ~‘r,(i,: in the form of a difference of integrals along the semiaxes I('. X;) 

and lr,. 33). Then the first integral can be found from the tables of integration /S/, and 
for the second integral the estimate obtained above holds. Expanding the function f(t) on 
the segment iu. t,l in a uniformly converging Maclaurin's series and integrating the resulting 
expression term by term, we arrive at formula (3.3). 

Using the substitution f = a,-‘1, we reduce the integrals appearing in (3.11 to the 
form (3.21, and i,, = a,,~~. k = 1. 2. It should be noted that for most materials the quantity 
a O = c,2a0 -I is of the order of ii)'", and Re).,- IO':. and this enables us to use the asymptotic 
expansion (3.3) with an accuracy, sufficient in practice for any, even very small values of 
2. Restricting ourselves to the principal term of the expansion, we shall write the following 
expressions for the displacements: 
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4. Asymptotic form of UL as R-r= R=fpZfz2. 
we fixthe branchesofthe radicalsin (2.2) by meansofthecon- 

dition Re(&, &, df > 0. This enables ustochange the order of 
integrationin (2.3), providedthatthepath of integration in the 
complexvariableplane p coincideswiththe path h (Fig.l), 
passingalonqthe imaginary axis. Consideringtheintegrals in 
questionin theplane of the complex variable k, we shallwrite 
the solutioninanother formwhichwilltake,e.g. for the first 
termof (2.11, the form 

u&-T [{ 
-1s L 

AO fp, k, t) kH, (kp) dk] ePrdp 

The path of integration L in the plane of the complex 
variablekis shownin Fig.2. The singularitiesindicatedinFig.2 
are k ,,$ = -t_ i -$ , k,,, = & i -$ 

Fig.2 &,,=I&- + $9 k,,, = + i .$- 

To illustrate the geometrical constructions, all singularities of the integrands are 
removed from the real axis. 

Deforming the initial path L into the path h,, coinciding with the path of steepest 
descent, we obtain the asymptotic form of the solution using the method of steepest descent 

where 

(4.1) 

and U,l. Cr2, C7R1,Cmt! are the corresponding terms of the displacement field in (2.3), describing 
the fields of the longitudinal and transverse waves. 

Let us now denote by U, the part of the displacement field in (2.3) which describes 
the elastic wave propagating with a velocity equal to the velocity of heat propagation 
The asymptotic expression for C, as R-c\: will be 

cp. 

In the case of a point source we have 

(H(T,)- erp (- 2~~)) + (1- 2yrsin*0)? X 
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where 

A study of the propagation of the discontinuities in the elastic displacement field is 
of interest. The discontinuities in the displacement field are caused by unequal convergence 
of the integrals (4.1)~(4.?)at the limit at infinity. Let us denote by tc; and Hr the 
magnitudes of the jumps at the longitudinal and trasnverse wave fronts corresponding to the 
discontinuities in question. From (4.1). (4.21 we obtain 

it’, ; b, (0, - fir, 
i 

( j - p;Zsin* (j)2 
ZTppJ,R ‘t;=I Sjil? (j 1;’ - y yin’ (3 - 

I/‘uy=za I 
cu. ii 

Il.:= "$*--~~ I, ( [cocf3__l ‘- ;--;;“, j%m 

Similarly, the discontinuities in the displacements field I-,' are described by the 
expression 

Figure 3 shows the reslits cf n'.rmerical computation of the normalized direCti@z functions 

for varic-5 val>ues of the quantity 
.- 

.c3=j (1, -1. The c':rves 
l-4 correspcnd tc the values ;'? = Q.5: 0,0t: $3. $1, 

T:-,.:e the cllrecticn functions pi (@ depends sub- 
s=a-tiall.i on the numericai value cf the rate of heat 
przpagaticn c ? The probiem concerning the quar.:ity 

'il can be solved after determining the direction 
function experimentally. 

Fig.? 
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