6. BREKHOVSKIKH L.M. and GONCHAROV V.V., Introduction to the Mechanics of Continuous Media, Nauka, Moscow, 1982.
7. NIKOLAYEVSKII V.N. and RAMAZANOV T.K., On waves of lithosphere interaction with the asthenosphere. Hydrogeodynamic Forerunners of Earthquakes. Nauka, Moscow, 1984.
8. GUBERMAN SH. A., D-waves and earthquakes. Computational seismology. Theory and Analysis of Seismological Observations, No.12, Nauka, Moscow, 1979.
9. VASIL'yEV V.A., ROMANOVSKII YU.M. and YAKHNO V.G., Self-wave processes in distributed kinetic systems, Uspekhi Fiz. Nauk, Vol.128, No.4, 1979.

Translated by M.D.F.

FMM U.S.S.R., Vol. 49 ,NO.3,Pp. 362-366,1985
$0021-8928 / 85 \$ 10.00+0.00$
Printed in Great Britain
Pergamon Journals Ltd.

generalized dynamic problem of thermoelasticity for a half- space heated by laser radiation*

M.S. BOIKO

A generalized dynamic problem of thermoelasticity is solved for a halfspace heated by laser radiation. Expressions for the displacements in the Fayleigh wave are obtained. The asymptotic form of the solution at a point at infinity is studied. It is shown that the magnitude of the displacements at the wave fronts depends essentially onthe value of the xate of propagation of heat.

1. Formulation of the problem. Let a beam of raciant energy fall, at the instant $t=0$, on a circular region of a plane boundary of an elastic half-space. The position of every point of it is determined by the coordinates ρ, z, θ_{1} of a cylinarical coordinate system. The radiation intensity volume density of the beam is

$$
q_{v}(0 . \tau)=q_{1}(0) H(v), \quad q_{i}(0)= \begin{cases}q_{0}, & 0 \leqslant 0 \leqslant R_{0} \tag{2.1}\\ 0, & \rho>R_{0}\end{cases}
$$

($H(\tau)$ is Heaviside's function). We require to find the elastic stresses and displacements in the half-space when the radiant energy is absorbed. The variationin the temperature field caused by the deformation is ignoraed.

The solution of this problem can be reduced to solving the following set of Eqs. / //:

$$
\begin{align*}
& l=1-t_{T} \frac{\partial}{i T}, \quad m=\frac{3 \lambda-2 \mu}{i+2 \mu} \alpha_{i} \tag{1.2}
\end{align*}
$$

Here Φ, Ψ are the displacement potentials, t is temperature, c_{1}, c_{2} are the velocities of the longitudinal and transverse wave, t_{r} is the themmal fiux relaxation time, a is the thermal conductivity, i, ,, are the Lame coefficients, $a_{\text {, }}$ is the coefficient of thermal expansion, and Δ is the Laplace opexator.

The solutions of the system must satisfy the following boundary and initial conditions:

$$
\begin{align*}
& \sigma_{z z}=\sigma_{0 t}=0, \quad-\lambda_{Q} \frac{\partial t}{\partial z}=\eta l q_{v} \tag{2.3}\\
& \Phi=\Psi=t=\frac{\partial t}{\partial \tau}=\frac{\partial \Phi}{\partial r}=\frac{\partial \Psi}{\partial \tau}=0 \tag{1,4}
\end{align*}
$$

($\sigma_{i j}$ is the thermoelastic stress tensor, η is the absorption capacity and λ_{i} is the thermal conductivity.
2. Construction of the solution. We shall construct the solution of the problem using the contour-integral method /2/. Let us write the solution sought in the form of the Fouriex-Bessel transform

[^0]\[

$$
\begin{align*}
& \Phi=\int_{0}^{\infty} \bar{A}_{0}(k, z) k J_{v}(k \rho) d k, \quad \Psi=\int_{0}^{i} \bar{A}_{1}(k, z) k J_{1}(k \rho) d k, \tag{2.1}\\
& t=\int_{0}^{\infty} \bar{A}_{2}(k, z) k J_{0}(k \rho) d k, \quad \bar{A}_{j}(k, z)=\frac{1}{2 \pi i} \int_{0-i \infty}^{\sigma+i \infty} A_{j}(p, k, z) e^{p t} d p, \\
& j=0,1,2
\end{align*}
$$
\]

The unknown functions A_{j} are found by substituting relations (2.1) into (1.2)-(1.4) and solving the resulting ordinary differential equations in the same manner as in $/ 2 /$. Let us write the final expressions for A_{j}

$$
\begin{align*}
& A_{0}=T_{1} e^{-\beta_{1} z}+T_{2} e^{-d z}, \quad A_{1}=T_{3} e^{-\beta_{2} z}, \quad A_{2}=\frac{B_{1}}{p k d} e^{-d z} \tag{2.2}\\
& T_{1}=\frac{T_{2}}{T_{0}}\left[\left(k^{2}+\beta_{2}{ }^{2}\right)^{2}-4 k^{2} \beta_{2} d\right], \quad T_{2}=\frac{b c_{2}{ }^{2}}{k p^{2} d} \mathbb{U}_{1}(p) J_{1}\left(k R_{0}\right) \\
& T_{3}=\frac{2 T_{2}}{T_{4}}\left(k^{2}-\beta_{2}^{2}\right)\left(\beta_{1}-d\right) k . T_{0}=4 k^{2} \beta_{1} \beta_{2}-\left(k^{2}-\beta_{2}{ }^{2}\right)^{2} \\
& a_{0}=\frac{c_{1}{ }^{2}}{a} . \quad a_{1}=\frac{c_{1}{ }^{2}}{c_{q}{ }^{2}}-1 . \quad \beta_{l}{ }^{2}=h^{2}-\frac{p^{2}}{c_{l}{ }^{2}} . \quad l=1.2: \\
& d^{2}=k^{2}-\frac{p}{a}+\frac{p^{2}}{c_{q}{ }^{2}} \\
& \psi_{1}(p)=\frac{1}{a_{0}+a_{1} p}\left(1-\frac{a F^{2}}{c_{q}{ }^{2}}\right)
\end{align*}
$$

(c_{q} is the rate of heat propagation). The branches of the radicals in (2.2) are fixed by the condition that $\arg \beta_{1}=\arg \beta_{2}=\arg d=0$ when $p=0$.

We write the expressions for the components of elastic displacements in the form

$$
\begin{aligned}
& k J_{1}\left(k R_{6}\right) J_{1}(k n) d k
\end{aligned}
$$

Analysing expressions (2.2) we find that $A_{j}(p, k, z)$ are analytic functions of the complex variable p in the region ($G: \operatorname{Rep}>-a_{0} a_{1}{ }^{-1}$) when $c_{q}>c_{1}$, and in the region ($G: \operatorname{Re} p>0$) wher. $c_{q} \leqslant c_{1}$. Analytic continuation $A_{j}(p, k, z)$ to the left half-plane is a multivalued function. with branch points
anc simple poles

$$
p_{3,6}=-i k c_{R} \cdot p:=-a_{0} a_{1} \cdot p_{16}=0
$$

We shall consider, on the upper sheet of the multisheeted Riemann surface the branch of the multivalued function $A_{j}(p, k, z)$ which represents the analytic continuation of this function, first defined in the region G Every sheet of the Riemanrian surface represents a plane p with cuts carried out as showr in Fig.i.

Following $/ 3$, , we shall represent the whole fielo of displacements in the form

$$
L^{*}=U_{0}-U_{F}-r^{\prime}
$$

where U_{0} describes the static part of the problem and is determined by the contribution of the pole $p_{10}=0, U_{R}$ describes the Rayleigh wave and is determined by the contribution of the poles $p_{s .6}=\dot{\text { i }} i c_{k}$, representing the solution of the equation $T_{0}=0, U_{\lambda}$ describes the volume waves and is obtained by integrating along the contour $\%$ shown in Fig.l. We eliminate U_{0} from further consideration, since we concern ourselves here only with the dynamic part of the problem.
3. Determination of the displacement field in the Rayleigh wave. If the deformation of the initial contour of integration into the contour λ is accompanied by intersection of the poles $P_{3,6}$. then the contribution of these poles determining the Rayleigh wave must be taken into account. Determining the residues at these poles we obtain

$$
\begin{equation*}
\left.U_{\rho R}=\frac{b c_{1}^{2} c_{2}^{2}}{c_{R} c_{1} c_{1}} \operatorname{Re}\left[\int_{0}^{\infty}\left\{\frac{4 \eta_{1}}{i x}-\frac{1+\eta_{1}^{2}}{i d_{1}}\right) e^{-\mu, x}-\eta_{1}\left(1-\eta_{1}^{2}\right)\left(\frac{\eta_{1}}{i x}-\frac{\eta_{2}}{i d_{2}}\right) e^{-\mu_{2} x}\right\} \varphi_{1}(i x) J_{1}\left(\frac{x R_{11}}{c_{R}}\right) J_{1}\left(\frac{x \rho}{c_{R}}\right) d x\right] \tag{3.1}
\end{equation*}
$$

$$
\begin{aligned}
& U_{2 R}=\frac{b c_{2}{ }^{2}}{4 c_{R}{ }^{3} c_{0}} \operatorname{Re}\left[\int _ { 0 } ^ { \alpha } \left\{\left(\frac{4 \eta_{2}}{i z}-\frac{\eta_{1}{ }^{2}+1}{i d}\right) e^{-\mu \mu_{1} \eta_{\eta_{1}}}+\right.\right. \\
& \left.\left.\left(1-\eta_{1}{ }^{2}\right)\left(\frac{1}{i x}-\frac{\eta_{1}}{i d}\right) e^{-\mu_{1} x}\right\} \mp_{1}(i x) J_{1}\left(\frac{x R_{0}}{c_{R}}\right) J_{0}\left(\frac{x \rho}{c_{R}}\right) d x\right] \\
& d_{1}=\sqrt{\sqrt{x\left(i a_{3}+a_{2} x\right)}}, \quad a_{2}=\frac{c_{R}{ }^{2}}{c_{q}{ }^{2}}-1, \quad a_{3}=\frac{c_{R}{ }^{2}}{a} \\
& \eta_{k}{ }^{2}=\frac{c_{k}^{2}-c_{R}^{2}}{c_{k}^{2}}, \quad \mu_{k}=\frac{2 \eta_{k}}{c_{R}}-i \tau, \quad k=1,2 \\
& c_{0}=\frac{\eta_{2}^{2}-\gamma^{2} \eta_{1}^{2}}{\eta_{2} \eta_{2}}-\eta_{1}-1, \quad \gamma=\frac{c_{2}}{c_{1}}
\end{aligned}
$$

Let us consider a special case of a point source

Fig 1. obtained from (3.1) by the following passage to the limit:

$$
\lim _{R_{t} \rightarrow 0} U_{\rho R}=U_{\rho R}^{\circ}, \quad \lim _{R_{t} \rightarrow 0} U_{z R}=U_{2 R}^{*}
$$

where we have (W is the power of the ontical radiation source)

$$
\lim _{R_{k} \rightarrow 0} b R_{0}=b_{1}=\frac{\eta \| 1 \cdot m}{\lambda_{q}}
$$

Since it is not possible to derive an expression for the displacement components in closed form, we shall attempt to obtain the approximate expressions for $U_{\rho p}{ }^{\text {c }}$ and $U_{i H}{ }^{c}$. Let us consider the integral

$$
\begin{equation*}
\Phi\left(\lambda_{2}\right)=\int_{0}^{\infty} t^{v} e^{-i_{1} t} J_{2}\left(\lambda_{1} t\right) f(t) d t \tag{3,2}
\end{equation*}
$$

Lemma. Let

$$
f(t) \subseteq c^{\infty}([0 ; \infty]) ; \operatorname{Re} \dot{\gamma}_{2}>0, v>-2
$$

Then the following asymptotic expansion, as $\left|i_{2}\right| \rightarrow x$, holds:

$$
\begin{equation*}
\Phi\left(\lambda_{2}\right)=\Sigma \frac{f^{n}(0)}{n^{!}} \frac{\lambda_{1}}{2} \Gamma\left(\frac{x_{1}}{2}\right) \frac{2}{\left(\lambda_{2}^{2}+\lambda_{2}^{2}\right)^{3_{2}}} \times F\left(\lambda_{1} \cdot \frac{2-n-v}{2}, 2, \frac{\lambda_{1}^{2}}{\lambda_{1}^{2}-\lambda_{2}^{2}}\right), \quad v_{1}=\frac{2+n-v}{2} \tag{3.3}
\end{equation*}
$$

$\langle F(a, b, c, z)$ is the hypergeometric function and $\Gamma(z)$ is the gamma function).
Proof. We take $t=t_{0}$ such that $t_{0}<1$. Then

When Rein >0, the last integral has the following estimate by virtue of Lemma 1.1 of /4/:

$$
F_{1}\left(\hat{i}_{2}\right)<\operatorname{cep}\left\{\operatorname{Re}\left(\dot{A}_{2} t_{b}\right)\right\}
$$

Let us consider the integral

$$
\Phi_{n}\left(\dot{\lambda}_{2}\right)=\int_{0}^{1} t^{n-v} e^{-i 2^{t}} y_{1}\left(\lambda_{1} t\right) d t
$$

Let us write $\Phi_{\mathrm{n}}\left(\mathrm{h}_{2}\right.$ in the form of a difference of integrals along the semiaxes ($0, \infty$) and $\left.\mid t_{y}, \infty\right)$. Then the first integral can be found from the tables of integration $/ 5 /$, and for the second integral the estimate obtained above holds. Expanding the function $f(t)$ on the segment $\left|0 . t_{0}\right|$ in a unformly converging Maclaurin's series and integrating the resulting expressior term by term, we arrive at formula (3.3).

Using the substitution $t=a_{0}{ }^{-1} x$, we reduce the integrais appearing in (3.1) to the form (3.2), and $\lambda_{n_{2}}=a_{0} \mu_{k} . k=1,2$. It should be noted that for most matexials the quantity $a_{0}=c_{1}^{2} a_{0}^{-2}$ is of the order of 10^{12}, and Re $\lambda_{2} \sim 10^{5}$, and this enables us to use the asymptotic expansion (3.3) with an accuracy, sufficient in practice for any, even very small values of 2. Restricting ourselves to the principal term of the expansion, we shall write the following expressions for the displacements:

$$
\begin{aligned}
& \left.L_{Q H}^{:}=b_{2} \operatorname{Re} \mid Q_{2}-P_{1}-\eta_{1}\left(\eta_{1}^{2}-1\right) Q_{2}-\eta_{1} \eta_{2} P_{2}\right] \\
& L_{2 H}=b_{2} \operatorname{Re}\left[\eta_{2} Q_{1}-\eta_{1} P_{1}-\frac{\eta_{1}^{2}+1}{\eta_{1}} Q_{2}-\eta_{1} P_{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& Q_{k}=4 c_{R} \eta_{1} \frac{\sqrt{\left(\mu_{k} c_{R}\right)^{2}+\rho^{2}}-\mu_{k} c_{R}}{\rho \|^{\prime}\left(\mu_{k} c_{R}\right)^{2}+\rho^{2}} \\
& \left.P_{k}=\frac{3}{16 \rho}\right] \frac{\pi}{a_{3} c_{R}^{2}\left(\eta_{1}^{2}+1\right)} \quad\left[\left(\mu_{k} c_{R}\right)^{2}+\rho^{2}\right]^{-1 / 4} \\
& F\left(\frac{5}{4}, \frac{3}{4}, 2, \frac{\rho^{2}}{\left(\mu_{k} c_{R}\right)^{2}+\rho^{2}}\right), \quad k=1,2, \quad b_{2}=\frac{b_{1}}{4 a_{0}\left(\eta_{2}^{2}+1\right) c_{0}}
\end{aligned}
$$

Fig. 2
4. Asymptotic form of U_{2} as $R \rightarrow \infty R=\sqrt{\rho^{2}+z^{2}}$. We fix the branches of the radicals in (2.2) by means of the condition $\operatorname{Re}\left(\beta_{1}, \beta_{2}, d\right)>0$. This enables us to change the order of integration in (2.3), provided that the path of integration in the complex variable plane p coincides with the path λ (Fig.1), passing along the imaginary axis. Considering the integrals in question in the plane of the complex variable k, we shall write the solution in another form which will take, e.g. for the first term of (2.1), the form

$$
\Phi=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty}\left[\int_{L} A_{0}(p, k, z) k H_{0}(k \rho) d k\right] e^{p \tau} d p
$$

The path of integration L in the plane of the complex variablek is shown in Fig.2. The singularities indicatedin rig. 2 are

$$
\begin{aligned}
& k_{1,2}= \pm i \frac{p}{c_{1}}, \quad k_{3,4}= \pm i \frac{p}{c_{2}} \\
& k_{3,6}= \pm \sqrt{\frac{p}{a}+\frac{p^{2}}{c_{7}^{2}}}, \quad k_{7,8}= \pm i \frac{p}{c_{\mathrm{R}}}
\end{aligned}
$$

To illustrate the geometrical constructions, all singularities of the integrands are removed from the real axis.

Deforming the initial path L into the path λ_{2}, coinciaing with the path of steepest descent, we obtain the asymptotic form of the solution using the method of steepest descent

$$
\begin{align*}
& U_{l}=\frac{b c_{1}^{2}}{2 \pi R} \int_{-i \alpha}^{i \alpha}\left[4 p^{-1} \gamma^{2} \sin ^{2} \theta\right]^{r} \overline{1-\gamma^{2} \sin ^{2} \theta}+ \tag{4.1}\\
& \left.\frac{\left(1-2 \gamma^{2} \sin ^{2} \theta\right)^{2}}{\sqrt{p\left[a_{0}+\left(a_{1}+\cos ^{2} \theta\right) p\right.}}\right] \frac{\operatorname{tg} \theta q_{1}(p)}{T_{1}} \cdot J_{1}\left(i \gamma_{1} p\right) e^{p r_{1}} d p \\
& U_{i}=\frac{b c_{2}^{2}}{2 . R} \int_{-i \infty}^{i \infty} \frac{\cos 2 \theta}{p}-\frac{\sqrt{1^{2}-\sin ^{2} \theta}}{\sqrt{p\left(a_{0} \gamma^{2}+\left(a_{4}+\cos ^{2} \theta\right) p\right]}} \cos ^{2} \theta \tag{4,2}\\
& \varphi_{1}(p) J_{1}\left(\gamma_{2} p\right) e^{p r d p}
\end{align*}
$$

where

$$
\begin{aligned}
& U_{i}=\frac{U_{\rho l}}{\sin \theta}=\frac{U_{2 l}}{\cos \theta}, \quad U_{t}=\frac{U_{\rho t}}{\cos \theta}=\frac{U_{z t}}{\sin \theta}, \quad \theta=\operatorname{arctg} \frac{\rho}{z} \\
& T_{l}=\left(1-2 \gamma^{2} \sin ^{2} \theta\right)^{2}-4 \gamma^{3} \sin ^{2} \theta \cos \theta 1^{\prime} \overline{1-\gamma^{2} \sin ^{2} \theta} \\
& T_{t}=\cos ^{2} 2 \theta-4 \sin ^{2} \theta \cos \theta 7 \gamma^{2}-\sin ^{2} \theta \\
& a_{4}=\frac{C_{2}^{2}}{c_{q}^{2}}, \quad \gamma_{j}=\frac{R_{0} \sin \theta}{c_{j}}, \quad \tau_{j}=\tau-\frac{R}{c_{j}}, \quad j=1,2
\end{aligned}
$$

and $U_{p t}, U_{2 i}, U_{p i}, U_{2:}$ are the corresponding terms of the displacement field in (2.3), describing the fields of the longitudinal and transverse waves.

Let us now denote by U_{q} the part of the displacement field in (2.3) which describes the elastic wave propagating with a velocity equal to the velosity of heat propagation c_{q}. The asymptotic expression for \dot{L}_{q} as $R \rightarrow \infty$ will be

$$
U_{Q}=b_{Q} c_{1}^{2} \int_{-i \alpha}^{i \alpha} \frac{J_{1}\left(i d_{0} R_{G} \sin \theta\right)}{p^{2}} e^{-d_{0} R+p \tau_{q_{1}}}(p) d p, \quad d_{0}^{2}=\frac{p}{a}+\frac{p^{2}}{c_{q}^{2}}
$$

In the case of a point source we have

$$
\begin{aligned}
& U_{1}=\frac{b_{1} c_{1}}{A T a_{0}}\left\{\left[2 a_{1}^{-3} \gamma^{2} \sin \theta \sin 2 \theta \sqrt{1-1^{2} \sin ^{2} \theta} \times\right.\right. \\
& \quad\left(H\left(\tau_{1}\right)-\exp \left(-\frac{a_{0}}{a_{2}} \tau_{1}\right)\right)+\left(1-2 \gamma^{2} \sin ^{2} \theta\right)^{2} \times \\
& \left.\left.\quad \frac{\cos \theta}{a_{0} \sqrt{a_{1}-\cos ^{2} \theta}} \Phi_{1}\left(\mathrm{r}_{1}\right)-\frac{1}{a_{1}} \exp \left(-\frac{a_{0}}{a_{1}} \mathrm{r}_{1}\right)\right)\right\} \\
& C_{1}=\frac{b_{1} c_{2}}{T_{1} a_{0} R}\left[\frac{\sin 4 \theta}{4} H\left(\mathrm{~T}_{2}\right)-\frac{\sqrt{\gamma^{2}-\sin ^{2} \theta}}{2 a_{0} \sqrt{a_{1}+\cos ^{2} \theta}} \sin 2 \theta \Phi_{2}\left(\mathrm{~T}_{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& U_{q}^{1}=\frac{b_{1} c_{1}}{R a_{0}}\left[\exp \left(-\frac{a_{0}}{a_{1}} \tau_{3}\right)+\Phi_{3}\left(\mathrm{~T}, \frac{R}{c_{q}}\right)\right], \quad c_{q} \leqslant c_{1} \\
& U_{q}^{1}=\frac{b_{1} c_{1}}{R a_{q}}\left[\exp \left(-\frac{a_{q}}{a_{1}} \tau_{4}\right) \div \Phi_{3}\left(\tau, \frac{R}{c_{q}}\right), \quad c_{Q}>c_{1}\right.
\end{aligned}
$$

where

$$
\begin{gathered}
\Phi_{1,2}=\int_{0}^{a_{5,6}} \frac{e^{-x \tau_{1.2}}}{\sqrt{x\left(a_{3,6}-x\right)}} \varphi_{1}(-x) d x \\
\Phi_{2}\left(\tau, \frac{R}{c_{q}}\right)=\int_{0}^{n} \frac{\exp \left(-d_{0} H-x \tau\right)}{\sqrt{x\left(a_{7}-x\right)}}\left(c_{1}(-x) d x\right. \\
a_{5}=\frac{a_{0}}{a_{1}-\cos ^{2} \theta}, \quad a_{6}=\frac{a_{0}{ }^{2}}{a_{4}-\cos ^{2} \theta} \\
a_{7}=\frac{c_{q}^{2}}{a}, \quad \tau_{8}=T-\frac{R}{c_{q}}, \quad \tau_{4}=T-\frac{R}{c_{q}}
\end{gathered}
$$

A study of the propagation of the discontinuities in the elastic displacement field is of interest. The discontinuities in the displacement field axe caused by unequal convergence of the integrals (4.1)-(4.2) at the limit at infinity. Let us denote by w_{i} and w_{i} the magnitudes of the jumps at the longitudinal and trasnverse wave fronts corresponding to the discontinuities in question. From (4.1). (4.2) we obtain

$$
\begin{aligned}
& H_{i}=\frac{b_{1}\left(a_{2}-1\right) r_{2}}{27 a_{1} a_{6} R}\left[4_{1}^{2} \sin ^{2} \theta \sqrt{1-7^{2} \sin ^{2} \theta}-\frac{\left.1-2 i^{2} \sin ^{2} \theta\right)^{2}}{1 a_{3}-\cos ^{2} \theta}\right] \cos \theta \\
& \left.W_{i}=\frac{b_{1}\left(a_{1}-1\right) c_{2}}{27 a_{1} a_{6} R}[\cos \theta-] \frac{y^{2}-\sin ^{2} \theta}{a_{1}-\cos ^{2} \theta}\right] \sin 2 \theta
\end{aligned}
$$

Similarly, the discontinuties in the displacements field t_{q}^{\prime} are described by the expression

$$
c_{4}^{2}=\frac{r_{1}\left(a_{1}-1\right) c_{5}}{2 a_{1} c_{0} R} \exp \left(-\frac{c_{4}^{2}}{a} R\right)
$$

Figure 3 shows the resilts of numerical computation of the normalized direction functions

Fig. 3

$$
F_{3} \mid \theta:=W_{i} \ln _{n} x
$$

for various values of the quantity \quad : $=1 a_{3}-1$. The curves $1-4$ correspone to the values is $=0.5,0,01: 5: 14$. Tris tre direction functions $F_{1}(\theta$ depends substantially on the numerical value of the rate of heat fropagation $c:$ The probiem concerning the quantity is can be solved after determining the direction function experimentaly.

REFERENCES

1. PODSTRIGACH YA. S. ana kOLYANO YU.M. Generaiizes Themomechanics. Kiev, Nakova Dumke, 1976.
2. PETRASHEN G.I., MOLOTOV I.A. ana KRAUKLIS P.V., Waves in Layerwise-Homogeneous Isotropic Elastic Media. The Metioa of Contour Integrals ir. Nonmsteacy Problems of Dynamics. Leningrac, Nauka, 1982.
3. SHEMYAKIN E.I. and FAMSHMID V.L. Propagation of waves in an elastic half-space excitec by a tangential surface force. Vch. zap. LGU, No. 177, 1954.
4. FEDORYUK M.V., The Methoc of Steepest Descent. Moscow, Nauka, 2977.
5. GRADSHIEIN I.S. and RYZHIK I.M., TabICs of Irtegrals, Sums, Series ana Products. Moscok, Nauka, 1971.

[^0]: *Prikl.Matem.Mekhan.,49,3,470-475,1985.

